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Abstract. Compound-nuclear processes play an important role for nuclear physics

applications and are crucial for our understanding of the nuclear many-body problem.

Despite intensive interest in this area, some of the available theoretical developments

have not yet been fully tested and implemented. We revisit the general theory of

compound-nuclear reactions, discuss descriptions of pre-equilibrium reactions, and

consider extensions that are needed in order to get cross section information from

indirect measurements.

1. Introduction

Compound-nuclear reactions play an important role in basic and applied nuclear physics.

They provide a prime example of chaotic behavior of a quantum-mechanical many-

body system [64, 77] and their cross sections are required for nuclear astrophysics,

national security, and nuclear-energy applications. The theoretical formalisms used

to describe compound reactions are typically considered well-established. R-matrix

treatments [62, 29] are employed for reactions proceeding through isolated resonances

and a combination of Hauser-Feshbach theory [50] and pre-equilibrium descriptions is

used for reactions involving strongly-overlapping resonances. Computational tools are

readily available and extensively used in the nuclear science community for calculating

a wide range of cross sections. Recommendations for input models and parameters have

been formulated [25] and evaluations using these tools have been published.

Hauser-Feshbach calculations require inputs that are typically obtained from

complementary measurements (low-lying nuclear levels, separation energies, etc.) and

nuclear-structure models. In the last decade or so, there have been increased efforts to

move from phenomenological models (for level densities, γ-ray strength functions, etc.)

to more microscopic structure descriptions. While the microscopic descriptions may

not be as successful in reproducing measured cross sections as their phenomenological
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counterparts at this time, they are crucial for developing a more predictive treatment

of compound reactions.

Equally important in this context is a reconsideration of the reaction models that

are implemented in the codes and of the underlying assumptions and approximations.

Much less attention has been paid to this aspect, but modern computational capabilities

and also the improved structure models that are now available should make it possible to

develop better treatments of the reaction mechanisms involved in compound reactions.

This is particularly relevant if one wants to calculate cross sections involving isotopes

more than a few units away from the valley of stability. Here, some of the assumptions

underlying current descriptions may no longer be valid and extensions of the reaction

models may become necessary.

For instance, as one moves away from the valley of stability, the nuclei under

consideration (which may serve as targets in neutron-rich astrophysical environments)

become weakly-bound. The associated low level densities make it relevant to question

the statistical assumptions underlying the standard Hauser-Feshbach formalism and

revisit the issue of energy averaging in compound nuclei. Intermediate structure

may become important, thus requiring an explicit treatment of doorway states.

Also, experimental restrictions in radioactive-beam experiments may not allow for

an experimental separation of direct and compound contributions to measured cross

sections. A formalism that can treat both on the same footing would be desirable [46,

47, 26].

Not all cross sections of interest can be measured directly. Radioactive-beam

experiments can probe reactions in inverse kinematics, but such experiments typically

provide information on transfer reactions (such as (d,p)) or inelastic scattering, which

have to be related to the reaction of interest (e.g. a neutron-induced reaction). Theory

is needed to describe the formation of a compound nucleus (or lack thereof) in such

transfer or inelastic scattering reactions and to extract the desired cross section from

the indirect measurement [37].

Recent studies have begun to address some of these issues. Here we give a

brief summary of existing theories for compound-nuclear, pre-equilibrium, and hybrid

reactions. In the next section, Section 2, we focus on the theory of the compound

nucleus from a projection-operator perspective. Section 3 covers the current status

of pre-equilibrium theories. Section 4 discusses hybrid reactions - indirect methods

for determining cross sections of interest. In Section 5, we collect some of the open

questions and challenges that remain to be addressed. Concluding remarks are offered

in Section 6.

2. Theory of the Compound Nucleus

The idea of a fully equilibrated ‘compound’ nuclear system, whose decay is independent

of its formation, was introduced in 1937 by Niels Bohr [18]. The equilibrium concept

was used by Weisskopf and Ewing [78] for a calculation of particle emission from
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a compound nucleus (CN), and a quantum-mechanical treatment was provided by

Hauser and Feshbach [50]. Hauser-Feshbach theory is widely used today, although

refinements are needed to account for various experimental findings. For instance,

Kawai, Kerman and McVoy [55] generalized the theory to cases where direct reactions

are present. The profound statistical concepts underlying compound reactions were

recognized [64, 77] and led to the consideration of observables other than average

cross sections, most notably correlation functions, first discussed by Ericson [33, 34].

Many of the ideas developed since the introduction of the compound-nucleus concept

found their way into other branches of physics, such as condensed-matter physics and

quantum chromodynamics. Here we focus on the theory of the compound nucleus from

a projection-operator perspective and summarize relevant developments.

2.1. Bohr’s Hypothesis and the Hauser-Feshbach cross section

The Bohr independence hypothesis states that formation and decay of the compound

nucleus are independent of each other. Consequently, the cross section takes a product

form (we omit the kinematic factor and consider a fixed the angular momentum value):

σcc′ = ξc · ξc′ (1)

Unitarity requires that the sum over the final channels give the probability of the

formation of the compound nucleus in channel c. This probability is just the transmission

coefficient, Tc,

Tc =
∑
c′
σcc′ = ξc

∑
c′
ξc′ or ξc =

Tc∑
c′ ξc′

(2)

Summing the above equation over c gives
∑
c Tc = (

∑
c ξc)

2, which leads to ξc =

Tc/
√∑

c′′ Tc′′ . Thus we obtain the Hauser-Feshbach form of the compound nucleus cross

section:

σcc′ =
TcTc′∑
c′′ Tc′′

. (3)

This expression was obtained by using the Bohr hypothesis and unitarity. In the present

form, it neglects correlations between the different channels, which are known to be

important, in particular at low energies. In practical applications, these correlations

can be accounted for by introducing a ‘width fluctuation correction factor,’ Wcc′ , in the

expression for the cross section:

σcc′ = Wcc′
TcTc′∑
c′′ Tc′′

, (4)

where

Wcc′ ≡
〈

TcTc′∑
c′′ Tc′′

〉
/
〈Tc〉〈Tc′〉∑
c′′〈Tc′′〉

. (5)

and the brackets denote averaging over a suitable energy interval I. For the case of

elastic scattering (c = c′), these correlations cause an enhancement of the cross section,

2 ≤ Wcc ≤ 3, as we show in Section 2.3 below.



Theoretical descriptions of compound-nuclear reactions: open problems & challenges 4

2.2. Feshbach’s theory of compound nuclear reactions

Feshbach [40, 41] introduced a formal theory of nuclear reactions based on projection

operators that serve to isolate the reaction mechanisms of interest. In this approach, the

complicated (closed) channels are eliminated from explicit consideration via projection

and subsequent energy averaging. The formalism covers both direct and compound

processes and is applicable to elastic scattering as well as more complex reaction

mechanisms. Here we summarize the salient features for the elastic case.

We assume one open channel (elastic) and many closed channels (the compound

nuclear states) and denote the total wave function of the system by |Ψ >. The open

channel is projected from the wave function by using the projection operator P , while

the closed channels are projected out with the projection operator Q. The Schrödinger

equation of the system, (E −H)|Ψ >= 0, becomes a set of coupled equations:

(E − PHP )P |Ψ >= PHQQ|Ψ > (6)

(E −QHQ)Q|Ψ >= QHPP |Ψ > (7)

The effective equation for P |Ψ > is obtained by eliminating the Q|Ψ > component,

(E − PHP − PHQ 1

E −QHQ
QHP )P |Ψ >

= (E − PHQGQQHP )P |Ψ >= 0 , (8)

where we have introduced the Q-space Green’s function:

GQ =
1

E −QHQ
(9)

Equation (8) is very complicated to solve. It contains a strongly energy-dependent

effective potential through the term PHQGQQHP . There is no absorption, as the

effective P -Hamiltonian PHP is Hermitian. The standard procedure for simplifying

the theory is to introduce an energy-averaged Q-space Green’s function, < GQ >.

This energy-average can be calculated using a Lorentzian weight function of the form

ρ(E,E ′) = (I/2π)[(E ′ − E)2 + (I/2)2], with an averaging width I that is much larger

than the width of a typical CN resonance, I � Γ. Using contour integration we obtain

< GQ >=
1

E −QHQ+ iI/2
. (10)

When < GQ > is used instead of GQ in Eq. (8), one speaks of the optical model

equation. The effective potential now has a slow energy dependence, but is intrinsically

complex. The loss of flux from the elastic channel described by the complex part of

optical potential PHQ〈GQ〉QHP owes its origin to the underlying CN coupling. This

flux is not lost, as it reappears through the fluctuation cross section, as we describe

below. Equation (8) has the following formal solution:

P |Ψ >= |φ > +G
(+)
P PHQ

1

E −QHQ
QHP |Ψ > . (11)

Here G
(+)
P is the “free” P-space Green’s function, given by G

(+)
P = 1/(E − PHP + iε).
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The S matrix can then be written as

S = S(0) − 2πiPHQ
1

E −QHQ−QHPG(+)
P PHQ

QHP . (12)

The first term is a unitary background term, while the second term contains a sum

over resonances. These resonances are the compound nucleus resonances. To make

connection with the complex optical potential, one resorts to energy averaging over

these resonances. The average cross section is found to contain three terms: the potential

scattering term, the compound nucleus term and the interference term. This last term

makes the analysis of reaction data rather cumbersome and complicates attempts to

separate the cross sections into direct and compound contributions. Kawai, Kerman,

and McVoy (KKM) [55] offered a solution, which we describe next.

2.3. The Kawai-Kerman-and-McVoy (KKM) theory

In Ref. [55], Kawai, Kerman, and McVoy (KKM) derive a new representation of the

full S matrix which eliminates the compound-direct interference term. They introduce

the optical potential at the outset when dealing with the effective equation for the

P |Ψ > wave function. This procedure results in an average cross section containing the

optical (or coupled-channels) term and the compound-nucleus, or “fluctuation,” term;

the interference term averages to zero.

More specifically, Kawai, Kerman, and McVoy start with Equation (8) and add and

subtract the energy-averaged Q-space Green’s function, Eq. (10), to obtain:

(E − PHP − PHQ < GQ > QHP )P |Ψ >= PV QGQQV PP |Ψ > (13)

where PV Q = PHQ
√

I/2
E−QHQ+iI/2

. A similar form is found for QV P .

Imposing strict time-reversal invariance, the scattering S-matrix for a reaction

c→ c′ which proceeds through compound-nucleus states, |q >, can be written as

Scc′ = Soptcc′ − i
∑
q

gqcgqc′

E − εq
= Soptcc′ + Sflcc′ (14)

where the resonance decay amplitude gqc is given by,

gqc =
√

2π
〈
φq|V |ψ(+)

c

〉
, (15)

and εq = Eq − iΓq/2 is the complex energy of the CN resonance. The energy-averaged

piece of the S-matrix is denoted by Sopt, such that Soptcc′ = 〈Scc′〉, and accordingly we

have the constraint〈
Sflcc′

〉
= −i

〈∑
q

gqcgqc′

E − Eq

〉
= 0 . (16)

This constraint makes it possible to write the energy-averaged cross section as an

incoherent sum of two terms, namely,

σcc′ = σoptcc′ + σ̂flcc′ (17)
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The average partial fluctuation cross section cross section, for a given orbital angular

momentum value L, is σ̂flcc′ = σflcc′ π(2L+ 1)/k2
c , where

σflcc′ =
〈
|Sflcc′|2

〉
=

〈∑
qq′

gqcgqc′g
?
qcg

?
qc′

(E − Eq + i(Γq)/2)(E − Eq′ − i(Γq′)/2

〉
. (18)

To perform the energy average, one first collapses the double sum over q and q′ into a

single sum, and uses box averaging:

σflcc′ =
∑
q

(1/I)
∫ E+I/2

E−I/2
dE ′

gqcgqc′g
?
qcg

?
qc′

(E − Eq)2 + (Γq/2)2
(19)

Since the averaging interval I is much larger than the average compound nucleus

width, we may assume I/2 � E − Eq, without loss of generality. Allowing the

integration limits to go to∞, the integral over can be performed by contour integration,

giving σflcc′ = 2π
I

∑
q[

1
Γq
gqcgqc′g

?
qcg

?
qc′ ]. This sum can be related to an average over q, by

recognizing
∑
q[

1
Γq
gqcgqc′g

?
qcg

?
qc′ ] = (I/D) < [ 1

Γq
gqcgqc′g

?
qcg

?
qc′ ] >q, where D is the average

spacing between CN resonances, and the ratio, I/D is the number of resonances within

the averaging interval. Removing the inverse of the width from inside the q average,

and replacing 1/Γq by 1/Γq ≡ 1/Γ, we finally get

σflcc′ =
2π

DΓ
< gqcgqc′g

?
qcg

?
qc′ >q (20)

We use the Gaussian distribution of the form factors g to reduce the above

average as < gqcgqc′g
?
qcg

?
qc′ >=< gqcg

?
qc >q< gqc′g

?
qc′ >q + < gqcg

?
qc′ >q< gqc′g

?
qc >q

+ < gqcgqc′ >q< g?qcg
?
qc′ >q. This decomposition suggests the following form for the

fluctuation cross section:

σflcc′ =
〈
|Sflcc′|2

〉
= XccXc′c′ +Xcc′Xc′c + (

2D

πΓ
)|Ycc′|2 , (21)

where the X and Y matrices are defined as follows:

Xcc′ =

√
2π

ΓD

〈
gqcg

†
qc′

〉
(22)

Ycc′ =
π

D
〈gqcgqc′〉 (23)

The cross section is usually expressed in terms of the transmission or penetration

matrix whose cc′ element is defined by:

Pcc′ = δcc′ −
∑
c′′
Soptcc′′(S

opt
c′′c′)

∗ =
∑
c′′

〈
Sflcc′′(S

fl
c′′c′)

∗
〉

(24)

=
∑
c′′

〈∑
qq′

gqcgqc′′g
∗
q′c′′g

∗
q′c′

(E − Eq)(E − E∗q′)

〉
.

This can be reduced to the following expression for the matrix:

P = XTr(X) +X2 + (
2D

πΓ
)Y Y † (25)

In the region of overlapping resonances the last term, which contains the matrix Y ,

is very small and can be neglected in both P and in the expression for σflcc′ . If we further
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ignore the X2 term in the equation for the transmission coefficient above, we can then

solve for X(P ), as X = P/(TrP )2, and thus obtain the Hauser-Feshbach cross section

in the presence of direct reactions,

σflcc′ =
PccPc′c′ + Pcc′Pc′c

TrP
(26)

For the case of elastic scattering, c = c′, we obtain the cross section σflcc = 2 (Pcc)2

TrP
,

which clearly exhibits the elastic enhancement factor of 2. This factor was verified

experimentally by Kretschmer et al [61]. In the opposite limit of isolated resonances,

where we have weak absorption, the g′s are real and the matrices 〈gqcgqc′〉 =
〈
gqcg

†
qc′

〉
;

thus the matrix Y =
√

2D/πΓX and the fluctuation cross section for elastic scattering

becomes σflcc = 3 (Pcc)2

TrP
, i.e. it carries an elastic enhancement factor of 3. In this same

weak absorption limit, the cross section for a given transition is simplified significantly,

as the transmission coefficients can be related to the partial width Γc and density of

states (1/D) as Pcc = 2πΓc/D (for neutrons). The leading term of the CN cross section

becomes DΓcΓc′/Γ, clearly exhibiting the dependence on the CN density of states. To

get a full picture of this dependence, the other terms in the cross section must also be

calculated [55].

2.4. Intermediate structure and Doorway resonances

It was recognized in the early 1960s that the average cross section exhibits modulations

with a width that is much larger than the average CN resonance width. The concept

of Intermediated Structure was introduced [58], and an interpretation in terms of

a“Doorway” state was advanced [17] (see also [19]). The structure of a doorway state is

considered to be much simpler than that of a CN resonance. To account for intermediate

structure in reactions, one introduces a third projection operator, D, in addition to the

projection operators P and Q, such that P + Q + D = 1 with PQ = PD = QD = 0

and PP = P , QQ = Q, and DD = D. The doorway state’s width is composed of

two terms, the escape width, which measures the degree of the coupling to the open

channels, and the spreading width, which measures the strength of the coupling to the

more complicated CN states.

The system of coupled equations previously considered is now replaced by a system

consisting of three coupled equations:

(E − PHP )P |Ψ >= PHQQ|Ψ > +PHDD|ψ > (27)

(E −QHQ)Q|Ψ >= QHPP |Ψ > +QHDD|Ψ > (28)

(E −DHD)D|Ψ >= DHPP |Ψ > +DHQQ|ψ > (29)

The formal solution of the above set of equations follows basically the same steps as

before. It is, however, more complicated, because of the additional couplings that can

occur. One may resort to the extreme doorway model in which direct coupling between
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the P and Q spaces is absent and can only proceed through the doorway. This implies

PHQ = 0 and QHP = 0. The three equations then become

(E − PHP )P |Ψ >= PHDD|ψ > (30)

(E −QHQ)Q|Ψ >= QHDD|Ψ > (31)

(E −DHD)D|Ψ >= DHPP |Ψ > +DHQQ|ψ > . (32)

The next step in the reduction is to average over the Q resonances. We first eliminate the

Q-component of the wave function, recognizing that P |Ψ >= |φ > +GPPHDD|Ψ >,

where |φ > is a solution of (E − PHP )|φ >= 0 and Q|Ψ >= GQQHDD|ψ >. We

introduce the energy-averagedQGreen’s function< GQ >=< 1
E−QHQ >= 1

E−QHQ+i(I/2)
.

The width of the averaging interval I is much larger than the width of a typical CN

resonance, but smaller than than the width of the doorway, Γq � I < ΓD. Using

< GQ > in the third equation, which is now an equation for the Q-space averaged

doorway wave function, we obtain

(E −DHD −DHQ < GQ > QHD −DHPGPPHD)D|Ψ >= DHP |φ > (33)

Inserting this solution back in the first equation for P |Ψ > results in an equation

for the open channel’s wave function. The Q-space averaged S-matrix is now directly

obtained. Note that the doorway width is composed of an escape width, Γ↑D, and a

spreading (damping) widths, Γ↓D, i.e. ΓD = Γ↑D + Γ↓D. In the simple case of purely

elastic scattering, the S-matrix becomes

S00 = S
(0)
00

[
1− i Γ↑D

E − ED + i(Γ↑D + Γ↓D)/2

]

= S
(0)
00

[
E − ED − i(Γ↑D − Γ↓D)/2

E − ED + i(Γ↑D + Γ↓D)/2

]
, (34)

which is manifestly non-unitary owing to the presence of the spreading width. The

transmission coefficient can be calculated as P00 = 1− |S00|2 and we find

P00 =
Γ↑DΓ↓D

(E − ED)2 + (ΓD/2)2
(35)

This expression is symmetric around the doorway energy ED. The symmetry is removed

when the couplings PHQ and QHP are included, which is necessary, e.g., for the case

of Isobaric Analog Resonances [40, 41].

The concept of doorway states has been of great value in the description of nuclear

reactions involving resonances. Doorway states can be as simple as a two particle-one

hole state or a collective giant resonance, which is a coherent excitation of one particle-

one hole states. Both are damped due to their couplings to the more complex CN states.

The doorway idea is also used in other branches of physics, such as in the description of

metal clusters. Furthermore, the concept of doorway states with increasing complexity is

the basic ingredient in pre-equilibrium theories, such as the one developed by Feshbach,

Kerman, and Koonin [42]. This topic will be discussed in Section 3.
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2.5. Eriscon’s fluctuations

In the region of overlapping resonances, the peaks in the cross section do not correspond

to individual resonances. The cross section is just “noise” arising from the complex

underlying CN fluctuation and information about the compound nucleus, such as life

time, density of states, etc., cannot be simply obtained. In the early 1960s T. Ericson

suggested measuring the cross section correlation function in order to extract this

information. The correlation function is defined by

Ccc′(ε) = 〈σcc′(E)σcc′(E + ε)〉 (36)

The calculation of Ccc′(ε) is closely related to the calculation of the so-called S-

matrix correlation function. As a matter of fact, from the definition of the cross section

in terms of the S-matrix, we have,

〈σcc′(E)σcc′(E + ε)〉 = 〈Scc′(E)S†cc′(E)Scc′(E + ε)S†cc′(E + ε)〉 (37)

Assuming that the S matrix is a Gaussian-distributed random function, we can

decompose the four-point correlation function 〈Scc′(E)S†cc′(E)Scc′(E + ε)S†cc′(E + ε)〉
into two terms:

〈Scc′(E)S†cc′(E)Scc′(E + ε)S†cc′(E + ε)〉
= 〈Scc′(E)S†(E)cc′(E)〉〈Scc′(E + ε)S†cc′(E + ε)〉

+〈Scc′(E)S†cc′(E + ε)〉〈S†cc′(E)Scc′(E + ε)〉 (38)

The first term on the right-hand side is just the product of the average cross sections

and the second term can be written as |〈Scc′(E)S†cc′(E+ε)〉|2. Thus, we have to calculate

the S-matrix correlation function

CS
cc′ = 〈Scc′(E)S†cc′(E + ε)〉 . (39)

The calculation of the S-matrix correlation function follows exactly the same steps

as that of the average cross section. The energy average involved is of the form

CS
cc′ = 〈σcc′(E)〉 〈 1

1− iε/Γq
〉q = 〈σcc′(E)〉 1

1− iε/Γcorr
, (40)

where Γcorr is called the correlation width. It is NOT equal to the average CN width

Γ, but can be related to the sum of the transmission coefficients, 2πΓcorr

D
=
∑
c Pcc. No

such simple relation exists for the average width.

The cross section correlation function can now be evaluated. Since 〈σcc′(E)〉 =

〈σcc′(E + ε)〉, we have

C(cc
′)(ε) =

(〈σcc′〉)2

1 + ( ε
Γcorr

)2
, (41)

where the average cross section is given by the Hauser-Feshbach expression, σCNcc′ . In the

presence of direct reactions the above Lorentzian form is maintained, but the numerator

changes to 2σdircc′ σ
CN
cc′ + (σCNcc′ )2.
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An Ericson analysis of cross section data supplies the correlation width Γcorr. It

has been verified experimentally that the experimental Ccc′(ε), for small enough ε, is a

Lorentzian. This gave this method acceptance not only in nuclear physics research but

also in other branches of physics.

3. Preequilibrium reactions

The recognition that the spectra of particles in a given nuclear reaction invariably

show deviations from pure compound nucleus emission or a fast direct process, led J.

Griffin [48] to propose the exciton model of pre-equilibrium emission. These reactions

have attracted the attention of physicists ever since and a number of other semiclassical

and quantum mechanical models of this emission process have been developed. Here

we briefly describe the principal theoretical descriptions of pre-equilibrium emission and

discuss challenges and new ideas in the area.

3.1. Semiclassical models

Griffin proposed the exciton model of preequilibrium emission [48] to explain an excess

of high energy neutrons relative to those from the compound nucleus observed in (p,n)

reactions [53, 81, 22]. In a proton-induced reaction, a collision of the proton with

the nucleus leads to a 2p-1h state, in which the incident particle has excited a target

particles, creating a particle-hole pair. At energies below about 200 MeV, the wavelength

of a nucleon is still greater than about 2 fm, so that the projectile nucleon - target

nucleus interaction actually does not excite an individual particle-hole state, but some

linear combination of these. Further interaction of any of the particles or holes could

create, scatter or destroy particle-hole pairs. The exciton model classifies the states in

terms of the number of particles p and number of holes h and assumes that all states with

the same number of particles and holes are equally populated. Since the total number of

particles is conserved, the difference between the two, p−h, remains constant throughout

a collision. The quantity n = p+h, is called the exciton number. Particles emitted from

configurations with low exciton number tend to be more energetic and more focussed in

the forward direction than those emitted from the compound nucleus.

The competition between transitions to configurations of different exciton number

and emission is essential to the exciton model. Cline and Blann cast the model in the

form of a time-dependent master equation [28], in which energy is conserved but angular

momentum is not. The equation governing the time development of the fraction of the

cross section P (n) in the n exciton configuration is written as

dP (n)

dt
= λ−(n+ 2)P (n+ 2) + λ0(n)P (n)

+ λ+(n− 2)P (n− 2)− λ(n)P (n) (42)

where λ(n) is the total rate of transitions out of the n exciton configuration,

λ(n) = λ−(n) + λ0(n) + λ+(n) + λe(n),
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with λe(n) being the total rate of particle emission from the n exciton configuration.

The quantities λ−(n), λ0(n), and λ+(n) are the average rates for internal transitions

from the n exciton configuration with a change of exciton number by -2, 0, or +2. The

average rate of transitions that do not change the number of excitons, λ0(n), cancels

here.

Using Fermi’s golden rule, the internal transition rates can, in principal, be

calculated by summing over all squared residual interaction matrix elements leading

from the initial to the final configuration. In practice, this sum is written as the

product of the average squared matrix element of the residual interaction |M |2 with the

density of available states. For the exciton-number-changing transitions, the density of

available states counts the average number of ways an exciton of the initial particle-

hole configuration can be converted to three excitons (or vice versa), assuming the

energy-conserving transition between any of the single exciton states and any of the

three-exciton states to occur with equal likelihood. Similarly, the density of available

states for transitions that do not change the exciton number counts the average number

of ways any two excitons may scatter from one another, again assuming equal likelihood

for all energy-conserving transitions. Expressions for the density of available states were

given by Williams [79] and later corrected for the Pauli principle by Cline [27]. The

transition rate λ+(n) can also be expressed in terms of the imaginary part of the optical

potential [45] or in terms of the in-medium nucleon-nucleon scattering cross section or

mean free path [10]. The particle-emission rate is written in terms of the Weisskopf-

Ewing emission rate using the appropriate preequilibrium densities of states [80].

The exciton model uses integrated transition and emission rates to determine the

competition between scattering and emission. The hybrid model [10, 11, 12] uses exciton

model densities to determine the probability that a particle or hole has a given energy,

but then uses transition and emission rates for that energy to determine the competition

between escape and scattering. Results similar to those of the exciton model can be

obtained by slightly modifying the overall magnitude of the transition rate.

Fundamental to both the exciton and the hybrid model is the assumption of

equal occupation of the states in each n-exciton configuration. Blann and Vonach

demonstrated that this assumption is fairly well satisfied by the initial transitions to

the 2p-1h exciton configuration excited in a nucleon-induced reaction [16]. Bisplinghoff

showed, however, that this is not the case for the transitions to more complex

configurations [9]. The assumption would still be reasonable if the transition rate

among states of the same configuration, λ0(n), were much larger than the configuration

changing transition rates, λ±(n), so that equilibration could occur before a subsequent

transition. This is almost never the case, with

λ+(n) > λ0(n) > λ−(n) (43)

for small n for almost all excitation energies. This is due to the fact that the density of

states of the n exciton configuration is relatively small compared to that of the n + 2

configuration when n is small.
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Figure 1. Average exciton number at equilibrium, neq, and minimum exciton number

for equilibrium within a configuration, n0, as a function of gE, the product of the single

particle state density and the excitation energy. The additional curve, labeled n10, is

explained in the text.

In Fig.1, we show the exciton number of the configuration defining complete

equilibration, neq, for which

λ+(neq) = λ−(neq), (44)

as well as the minimum exciton number for equilbration within a configuration, n0,

which we define by

λ+(n0) = λ0(n0), (45)

as a function of the product of the single-particle density of states, g ≈ A/13 MeV−1

and the excition energy E. We have assumed that the average matrix element

inducing configuration changing transitions is equal to that among states of the same

configuration. For reference, we also show the exciton number for equilibration within a

configuration when the average squared matrix element for transitions among the states

of a configuration is 10 times that of the transitions between configurations, n10. This

can be the case at low excitation energy [72], where hole-hole transitions dominate the

λ0(n) transition rate. However, as the excitation energy increases, the particle-hole and

particle-particle matrix elements rapidly gain dominance in the transition rate, resulting

in average matrix elements that are nearly equal.

Returning now to the question of equilibration among the states of a given

configuration, from Fig.1 we see that this is plausible for the 3p-2h exciton configuration

at values of gE below about 50, corresponding to an excitation energy of about 17

MeV in 40Ca and of about 3 MeV in 208Pb. The minimum hole number increases

as n0 ≈
√

0.4gE while the equilibrium hole number increases as neq ≈
√
gE. Thus,

although the exciton and hybrid model do provide a reasonably good description of

preequilibrium spectra, one of their basic tenets is not satisfied. In part, the good

agreement is due to the fact that at lower excitation energies, most emission occurs from
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the initial 2p-1h configuration. As the excitation energy increases and more complex

configurations contribute to emission rates, discrepancies would be expected.

To avoid this problem, Blann proposed the hybrid Monte Carlo simulation

model [13], which he later extended, in collaboration with Chadwick, to a model of

double differential preequilibrium spectra [14]. Like the hybrid model, it calculates

transition rates using the energy of each particle or hole. However, it only uses the

transition rates to 2p-1h and 1p-2h configurations corresponding to the individual

particles and holes and determines the energy of each particle and hole after each

collision, using Monte Carlo selection from the 2p-1h and 1p-1h distributions. In a

sense, the model proposes an intranuclear cascade that is performed in energy-angle

space rather than configuration space. The model is more consistent than the exciton

and hybrid models and can describe pre-equilibrium spectra and double differential data

at least as well as these. However, like these, it generally does not describe well the high

energy component of spectra, where collective effects are important, nor scattering at

back angles, where quantum coherence effects play a role.

3.2. Quantum models

A fundamental difference between semiclassical and quantum models of preequilibrium

reactions is that semiclassical models do not distinguish between bound and continuum

states, while quantum models must do so. The exciton picture is still useful here, as

a means to refine the Feshbach decomposition of the space of states into a continuum

component P and a bound state component Q. Maintaining our emphasis on nucleon-

induced reactions, we can write

P = P1 + P3 + P5 + P7 + ... ,

Q = Q3 +Q5 +Q7 + ... . (46)

The decomposition of the direct reaction space P contains the elastic component P1

and a series of components with increasing exciton number in which it is assumed

that one (and only one) of the nucleons is in the continuum. Progression along the

stages of the P chain is usually assumed to result from additional interactions of the

continuum nucleon with the target, although it could also occur due to interactions

within the target. The decomposition of the compound nucleus space begins with the

three-exciton configuration Q3, since the incident nucleon must collide with at least one

nucleon, forming a two-particle, one-hole configuration, to be captured into a quasi-

bound state. Transitions between the chains may also occur at any stage. However, it

is assumed that all transitions change the exciton number by at most two.

Reactions that occur in the direct reaction space P are known as multistep direct

reactions. Those that occur in the compound nuclear space Q are known as multistep

compound reactions. The first multistep direct models were developed by Feshbach,

Kerman and Koonin [43] and by Tamura, Udagawa and Lenske [74] and later by

Nishioka, Weidenmüller, and Yoshida [67]. The first multistep compound model was
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developed by Agassi, Weidenmüller and Mantzouranis [1] and rederived using more

rigorous methods in Ref. [66]. Similar models were also proposed in Refs. [43, 44, 63].

3.2.1. The multistep compound model The multistep compound model includes in its

state or level densities only those states in which all of the single-particle states are

bound. At first glance, it would thus appear to be an exciton model in which the

transitions are limited to only bound single-particle states [73, 68]. In distinction from

the exciton model, the multistep compound one requires an interaction to occur for

a nucleon to be emitted from the composite system. Absorption occurs much as in

the exciton model, although the transition must lower the initially unbound nucleon

to a bound configuration. In the case of emission, the transition must raise one of

the nucleons to an unbound, continuum state so that it can leave the system. Like

the internal transition factors, λ±(n) and λ0(n), the factors describing emission can

change the exciton number by two, Yc±(n) or leave it unchanged Yc0(n) (taking into

account the particle in the continuum). However, one-particle to two-particle, one-hole

transitions cannot contribute to the emission rate, due to the restriction to bound initial

one-particle configurations.

The absorption factors describe the inverse process to emission and may be obtained

by reinterpreting the emission factors. In particular, the absorption factor for creating

the initial 2p − 1h configuration is Yc−(3). This form of the multistep compound

emission/absorption factors was first derived in Ref. [43]. Explicit expressions for these

and a general discussion of multistep compound processes can be found in Ref. [20].

A nucleon that undergoes a transition to the continuum can return to a bound-state

configuration due to another transition before escaping the nucleus. This introduces a

component proportional to the product of an emission and an absorption factor, called

the external mixing component. It permits transitions (through the continuum) that

change the exciton number by up to 4. It is derived and discussed in Ref. [1], but, to

our knowledge, has not been included in multistep compound calculations.

Because the multistep compound model requires that all particles be in bound

states, a multistep compound reaction is initiated from a multistep direct stage at all

but the lowest energies. Depending on the initial energy, the multistep compound

process can be fed by early, intermediate or late stages of the multistep direct

chain. As such transitions initiate a multistep compound chain at a higher exciton

number than those that enter it directly from the nuclear ground state, they tend to

decrease multistep compound preequilibrium emission rather than increase it. Most

preequilibrium multistep compound emissions come from the first few stages in the

chain. A composite system formed with a higher exciton number has a greater chance of

evolving to equilibrium before decaying than one formed with a smaller exciton number.

At low to medium excitation energy, the multistep compound transition rates of low

exciton number retain the same proportionality as those of the exciton model [73, 68].

The multistep compound model thus suffers from the same conceptual difficulty as

the exciton and hybrid models: the assumption of equal occupation of states in
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configurations with more than three excitons cannot be justified. This difficulty does

not necessarily diminish as the energy increases and a multistep direct stage becomes

necessary, since the minimum exciton number for equilibration between transitions also

increases with energy.

3.2.2. The multistep direct model To obtain expressions for multistep direct reactions,

one analyzes the coupling along the chain of continuum configurations

P = P1 + P3 + P5 + P7 + ... (47)

and, of course, their coupling to the compound nucleus states. One assumes that the

Hamiltonian can be written as

H = H0 + V (48)

where H0 consists of the projectile and target Hamiltonian, as well as a projectile-target

optical potential that accounts for the flux lost due to the interaction V but does not

induce transitions. All transitions are assumed to be the result of the interaction V . The

excitations of the multistep direct model are assumed to be individually weak, although

large in number, so that it is advantageous to rewrite the Schrödinger equation as a

Lippmann-Schwinger equation,

(E −H0− V )
∣∣∣ψ(+)

〉
= 0 −→

∣∣∣ψ(+)
〉

=
∣∣∣φ(+)

〉
+

1

E −H0

V
∣∣∣ψ(+)

〉
,(49)

where (E−H0)
∣∣∣φ(+)

〉
= 0, and to approximate the wavefunction using a series expansion,∣∣∣ψ(+)

〉
=
∑
n=0

(
1

E −H0

V
)n ∣∣∣φ(+)

〉
. (50)

The scattering amplitude can then be written as

Tµ0 =
〈
φ(−)
µ

∣∣∣V ∣∣∣φ(+)
0

〉
+
〈
φ(−)
µ

∣∣∣V 1

E −H0

V
∣∣∣φ(+)

0

〉
+
〈
φ(−)
µ

∣∣∣V 1

E −H0

V
1

E −H0

V
∣∣∣φ(+)

0

〉
+ . . . (51)

To reduce the cross section to a sum of terms, one observes that the first term projects

onto the 1p-1h component of the final states, the second onto the 2p-2h component, and

so forth (assuming of course that no transitions are induced by the target Hamiltonian

in H0). One then argues that averaging over a small interval in final excitation

energy renders the contributions from different configurations incoherent relative to

one another, reducing the cross section to a sum of terms,

d2σ

dEmdΩ
=
∣∣∣〈φ(−)

m

∣∣∣V ∣∣∣φ(+)
0

〉∣∣∣2 +
∣∣∣∣〈φ(−)

m

∣∣∣V 1

E −H0

V
∣∣∣φ(+)

0

〉∣∣∣∣2 (52)

+
∣∣∣∣〈φ(−)

m

∣∣∣V 1

E −H0

V
1

E −H0

V
∣∣∣φ(+)

0

〉∣∣∣∣2 + . . .

Other statistical hypotheses are necessary to simplify the expression further.

Multistep compound models have been carried out to various orders and with

varying degrees of sophistication. In the model proposed by Feshbach, Kerman and
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Koonin, an average residual interaction is generally used with exciton configuration

densities. The statistical hypotheses are assumed to be sufficiently strong to reduce

the n-step cross section to a convolution of single step cross sections. A two-step cross

section, for example, could then be written as

d2σ

dEdΩ

(
~k,~k0

)
=
∫ d3k′

2π3

d2σ

dEdΩ

(
~k,~k′

) d2σ

dEdΩ

(
~k′, ~k0

)
(53)

The resulting expressions are intuitively pleasing and fairly easy to calculate. Because

of this, the model has been compared extensively to experimental data [21] and used to

calculate up to fourth order and charge-exchange reactions [60]. However, reduction of

the n-step cross sections to convolutions requires the substitution of an optical wave

function with an outgoing boundary condition by one with an incoming boundary

condition, φ(+) → φ(−), in the intermediate propagators. As these wavefunctions differ

in magnitude by a factor of the optical S matrix, the approximation has proven difficult

to justify.

In an alternative approach, Tamura, Udagwa and Lenske [74, 70] developed the

physical structure of the excitations in more detail, but limited the reaction chain to two

steps. To obtain the one-step cross section, they calculated a 1p-1h response function

by diagonalizing the target nucleus Hamiltonian in the 1p-1h subspace. The advantage

of such an approach is that it can take into account both the collective and the single-

particle response of the excitation. Such single-step calculations have been performed

with even more rigor in recent years and show excellent agreement with experimental

data [31, 32].

As the incident energy increases, further direct reaction stages become necessary.

Tamura, Udagawa and Lenske extended their one-step response function to a two-step

one by assuming that the microscopic structure of the intermediate states in the two-step

cross section is incoherent on the average. They then convoluted the 1p-1h response with

itself to obtain the 2p-2h response function, but retained the intermediate propagator

form of the spatial structure of the two-step cross section. Nishioka, Weidenmüller

and Yoshida claim that the statistics is insufficent even for averaging the microscopic

structure and that the coherent 2p-2h response function should be used in the two-

step cross section. We build on arguments they put forth in Ref. [67] to analyze the

assumptions commonly used in multistep direct models.

We first analyze the approximations inherent in the ’leading particle’ nature of the

model, that is, in the fact that only one nucleon is assumed to be in the continuum

and is followed through the reaction. In Fig.2, the average energy of the fast (leading)

and slow final particles in a nucleon-nucleon collision (assumed to be isotropic in the

center-of-mass) in nuclear matter are displayed as a function of the incident particle

energy [59]. Above about 50 MeV, the averages values of the two energies are well

approximated by the straight lines in the figure,

Ehigh =
3

4
(Ei − 〈Ehole〉) and Elow =

1

4
(Ei − 〈Ehole〉) (54)
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Figure 2. Average energy of the fast (leading) and slow final particles in a nucleon-

nucleon collision in nuclear matter as a function of the incident particle energy. Also

shown is the dependence on initial energy of the final phase space volume for a collision,

in arbitrary units.

where the average hole energy is 〈Ehole〉 = 2EF/7, EF being the Fermi energy of the

(nonrelativistic) Fermi gas. The widths of the energy distributions of the fast and slow

particles are both about Ei/7. Also shown in the figure is the incident energy dependence

of the final phase space volume for the collision, in arbitrary units, which we take as a

relative measure of the probability of a collision.

If we consider an incident particle of 60 MeV, we conclude that the energy of the

leading particle after the collision will be about 30±9 Mev and the that of the slow

particle about 10±9 MeV, so that both are probably unbound. If we compare the final

phase space volumes associated with the two, we find that a second collision is about

7 times more likely to be induced by the 30 MeV particle than by the 10 MeV one.

Collision of the 30 MeV particle with another nucleon in the Fermi sea, would produce

a leading particle of 12±4 MeV, still unbound, on the average.

This problem becomes more serious as the energy increases. If we consider a 150

MeV incident nucleon, we find that the average energy of the fast particle after the

collison will be about 100±20 MeV, while the average energy of the slow one will be

about 35±20 MeV. In this case the probability of a second collision being induced by the

fast particle is only about 3 times greater than that of being induced by the slow particle.

The leading particle model of multistep direct reactions is thus limited to reactions at

fairly low incident energies for two reasons. First, at energies above about 30 MeV,

the probability of the slower particle in a collison being unbound becomes appreciable.

Second, as the energy increases, so does the probability that the slow particle interacts

before the leading particle does so again.

However, even at low incident energies, the multistep direct model suffers from the

same problem as the exciton and multistep compound models: for low exciton number,

the transition rate increasing the exciton number is much larger than the transition



Theoretical descriptions of compound-nuclear reactions: open problems & challenges 18

rate mixing states with the same exciton number. Here the lack of equilibration among

the states of same exciton number implies that they cannot be considered to contribute

incoherently, as it is the interaction among these states that would turn their phases

random. A correct description of the two-step process would thus require the partially

coherent 2p-2h response function. At higher energies, where the three step process

should be included, one would also need the complete 3p-3h response function, since

the limiting exciton number for equilbrium before transition, n0, increases with energy

as well.

We conclude from the above analysis that, with the exception of reactions at very

low energies in which the compound or multistep compound nucleus is formed directly,

the chain of preequilibrium reactions that eventually lead to the compound nucleus

are direct reactions and are at least partially coherent over a wide range of exciton

numbers. In addition, at energies greater than about 30 MeV, these reactions will

result in more than one continuum particle, as well as particles in bound states, that

can induce further transitions. Neither the effects of coherence beyond that in 1p-

1h excitations nor the contributions of transitions induced by particles other than the

leading one have been included in multistep direct reactions. The latter are contained

in the semiclassical hybrid Monte Carlo simulation model proposed by Blann and

Chadwick [14]. However, its semiclassical nature inhibits inclusion of the collective

and diffractive effects of quantum scattering that are essential to a complete description

of preequilbrium reactions.

Before closing, we observe that pickup reactions leading to composite particles such

as the deuteron, tritium and alpha are also important in preequilibrium scattering and

can contribute up to 20% of the preequilibrium yield [8]. Preequilibrium emission occurs

in reactions induced by composite particles as well, which can produce both pickup and

stripping components. In all cases, composite particle emission can occur directly or

from a mixture of continuum and bound states [49, 15, 54, 71]. Although preequilibrium

reactions have been studied for many years now, we are still only beginning to learn

how to describe them.

4. Hybrid reactions

Nuclear reaction cross sections are required input for models of stellar evolution and

element synthesis, simulations of the nuclear fuel cycle, and other applications. Of

interest are reactions of neutrons and light, charged particles with target nuclei across the

isotopic chart, taking place at energies from several keV to tens of MeV. Unfortunately,

for a large number of reactions the relevant data cannot be directly measured in the

laboratory or easily determined by calculations.

Direct measurements may encounter a variety of obstacles: The energy regime

relevant for a particular application is often not accessible – cross sections for charged-

particle reactions, e.g., become vanishingly small as the relative energy of the colliding

nuclei decreases. Furthermore, many important reactions involve unstable nuclei which
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are too difficult to produce with currently available techniques, too short-lived to serve

as targets in present-day set-ups, or highly radioactive. Producing all relevant isotopes

will remain challenging even for radioactive beam facilities.

Cross section calculations require a thorough understanding of both direct and

statistical reaction mechanisms (as well as their interplay) and a detailed knowledge

of the nuclear structure involved. Nuclear-structure models can provide only limited

information and very little is known about important quantities such as optical-model

potentials or spectroscopic factors for nuclei outside the valley of stability.

In order to overcome these limitations, one has to resort to indirect methods, which

normally rely on a combination of theory and experiment for success. Approaches

such as the Asymptotic Normalization Coefficient (ANC) method [82, 65], Coulomb

dissociation [7, 6], and the Trojan-Horse method [75] have yielded valuable cross-

section information for various direct reactions. Here we focus on the Surrogate

Nuclear Reactions technique, which employs a transfer or inelastic scattering reaction

to determine a compound-nucleus cross section indirectly.

4.1. The Surrogate Method

The surrogate nuclear reaction approach combines experiment with theory to obtain

cross sections for CN reactions, a + A → B∗ → c + C, involving difficult-to-produce

targets, A [23, 24, 38, 39, 37]. Of particular interest are neutron-induced reactions on

unstable nuclei, such as neutron capture A(n, γ)B (e.g. 95Zr(n, γ)96Zr) and neutron-

induced fission (e.g. 240Am(n, f)). In the Hauser-Feshbach formalism [50], the cross

section for this “desired” reaction takes the form:

σαχ(Ea) =
∑
J,π

σCNα (E, J, π) GCN
χ (E, J, π) , (55)

with α and χ denoting the relevant entrance and exit channels, a + A and c + C,

respectively. The excitation energy E of the compound nucleus, B∗, is related to the

projectile energy Ea via the energy needed for separating a from B: Ea = E − Sa(B).

In many cases the formation cross sections σCNα (E, J, π), which is directly related to

the transmission coefficient Tc in Eq. 3, can be calculated to a reasonable accuracy

by using optical potentials. On the other hand, the theoretical decay probabilities

GCN
χ (E, J, π) for the different decay channels (which are essentially the ratios Tc/

∑
c′′ Tc′′

in the same expression, Eq. 3) are often quite uncertain. The latter are difficult to

calculate accurately since they require knowledge of optical models, level densities, and

strength functions for the various possible exit channels. The objective of the surrogate

method is to determine or constrain these decay probabilities experimentally.

In a surrogate experiment, the compound nucleus B∗ is produced by means of

an alternative (“surrogate) reaction, d + D → b + B∗ that utilizes a target-projectile

combination that is experimentally more accessible. The surrogate reaction might

involve inelastic scattering, such as (p, p′), pickup, or stripping reactions, such as (d,p) in

inverse-kinematics setups. In the experiment, the desired decay channel χ(B∗ → c+C)
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is observed in coincidence with the outgoing particle b. The coincidence measurement

provides

Pδχ(E) =
∑
J,π

FCN
δ (E, J, π) GCN

χ (E, J, π) , (56)

the probability that the compound nucleus was formed in the surrogate reaction with

spin-parity distribution FCN
δ (E, J, π) and subsequently decayed into the channel χ. The

spin-parity distributions FCN
δ (E, J, π), which may be very different from the compound-

nuclear spin-parity populations following the absorption of the projectile a in the desired

reaction, have to be determined theoretically, so that the branching ratios GCN
χ (E, J, π)

can be extracted from the measurements. In practice, the decay of the compound nucleus

is modeled and the GCN
χ (E, J, π) are obtained by fitting the calculations to reproduce

the measured decay probabilities. Subsequently, the sought-after cross section can be

obtained by combining the calculated cross section σCNα (Eex, J, π) for the formation of

B∗ (from a+A) with the extracted decay probabilities GCN
χ (Eex, J, π) for this state (see

Eq. 55).

Predicting the spin-parity distribution for a compound nucleus produced in a

surrogate reaction requires a careful consideration of the reaction mechanisms that are

involved in the formation of the compound nucleus. In the absence of width fluctuation

corrections, the challenge of describing the relevant reaction mechanisms can be divided

into two separate problems:

1) the formation of a highly-excited nucleus in a direct reaction, and

2) the damping of the excited states into the compound nucleus.

The separation of the surrogate reaction into two separate sub-processes is somewhat

artificial, but may be useful conceptually. The surrogate reaction is viewed as a

mechanism that produces initially a highly-excited intermediate system. The system

might consist, for instance, of a nucleon N (stripped from the projectile d in the reaction

d+D → b+B∗) plus the surrogate target nucleus D. For the surrogate approach to be

valid, the D +N system must subsequently fuse to produce the compound nucleus B∗,

the decay of which one is interested in measuring. Decay of the intermediate system

(D + N in the example) by particle emission prior to reaching the equilibrated stage

would invalidate the surrogate approach, since the measured coincidence probabilities

would no longer be associated with the decay of the compound nucleus of interest, B∗.

It is thus important to understand how the configurations that are produced in the

initial step evolve. Specifically, one needs to determine the probability for forming the

desired compound nucleus B∗.

Addressing the first problem necessitates developing a quantitative description of

the direct-reaction process that allows for a prediction of the spin-parity distribution in

the highly-excited intermediate nucleus, immediately following the direct reaction. Such

a description requires a framework for calculating cross sections of different reactions

(stripping, pick-up, charge exchange, and inelastic scattering) to continuum states, for a

variety of projectiles (p, d, t, α, etc.) and targets (spherical, deformed, and transitional).
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First steps towards predicting the spin-parity population following the initial step of

a surrogate reaction were taken by Andersen et al [2], Back et al [5], and Younes

and Britt [83, 84]. These authors employed simple transfer calculations to estimate

compound-nucleus spin-parity distributions following various stripping reactions on

actinide targets. They neglected the possibility that the intermediate nucleus might

decay prior to reaching equilibrium and took the resulting spin-parity distributions

to be representative of those present in the compound nucleus created in the surrogate

reaction of interest. Modeling the decay of the compound nuclei allowed them to extract

(n,f) cross sections which showed good agreement with directly measured cross sections,

where those benchmarks existed.

The second problem to be addressed is associated with the evolution of the highly-

excited intermediate system that is created in the initial stage of the surrogate reaction.

The assumption that a compound (i.e. equilibrated) nucleus is formed is central

to the surrogate method. Rapid decay of the intermediate configuration before a

compound nucleus can be formed needs to be excluded experimentally, or accounted for

theoretically. Recent studies of inelastic 3He scattering on Zr and Y targets, for instance,

indicate that there is a small but non-negligible (5-20%) contribution from ‘non-

equilibrium’ decay when excitation energies above 15 MeV or higher are reached in the

intermediate nucleus [36]. Discrepancies are visible between measured γ-ray intensities

from the decay of the intermediate nuclear system and predictions from Hauser-

Feshbach-type calculations that account for the surrogate spin-parity distribution but

assume a fully equilibrated system. Non-equilibrium decay is expected to play an even

larger role in stripping reactions with weakly-bound projectiles. Therefore, it will affect

the interpretation of inverse-kinematics (d, p) experiments with radioactive beams.

For obtaining a better understanding of the evolution of the intermediate, highly-

excited, system following a direct reaction, ideas from the KKM approach (Section 2.3

and Refs. [55, 57]) can be employed. Some of these ideas have been investigated by F.S.

Dietrich [30] and by Parker et al [69] for an analogous case involving radiative neutron

and proton capture.

5. Some challenges and open questions

The description of CN reactions requires that many detailed features of nuclear structure

be ignored and the reaction be treated in some average sense. In the theories discussed

here, this is accomplished by projecting out closed reaction channels and introducing

energy averages. The underlying assumptions are that the reaction excites a sufficient

number of states in the compound nucleus and that the direct-reaction contributions

to the cross section do not vary significantly over the energy range considered. These

conditions are typically satisfied when the beam energy spread is much larger than the

CN level spacing and, at the same time, small compared to the incident energy. It has

long been known that these conditions are not always fulfilled, e.g. for reactions on light

nuclei, when the density of CN resonances becomes too small for a statistical treatment,



Theoretical descriptions of compound-nuclear reactions: open problems & challenges 22

but the number of resonances remains too large to allow for an individual treatment [52].

Similar difficulties can be expected for the application of reaction theories to nuclei away

from the valley of stability. Here the level densities decrease and inverse-kinematics

experiments at rare isotope accelerators will have a limited range of beam energies (per

nucleon) available.

Due to beam constraints, experiments at rare isotope facilities will encounter

reactions that contain contributions from both compound and direct reactions. To

disentangle the components, it becomes important to describe them in a coherent

framework. The KKM approach discussed in Section 2.3 makes a step into that direction,

by providing an extension of the Hauser-Feshbach formalism to the case where direct

reactions are present. The KKM theory is valid in the limit of strong absorption, defined

by the condition that the CN resonance widths are large compared to their spacings,

Γ/D � 1. Compound-nuclear cross section for the more general case, including weak

absorption, Γ/D � 1, can in principle be calculated in the framework of Random

Matrix Theory, under the assumption of a Gaussian Orthogonal Ensemble (GOE) of

real and symmetric Hamiltonian matrices [64]. This method uses ensemble averages,

which are considered equivalent to the energy averages considered in this paper. The

GOA approach has been very successful, both in the context of nuclear physics and

for the description of other chaotic systems. However, it requires a computationally

expensive calculation of a triple integral that enters the closed-form expression for the

average cross section [76].

While the GOE approach is often considered a reference to which other theories

should be compared, approximate methods are needed for practical applications. For

instance, correlations between the different reaction channels are known to play an

important role in certain circumstances (see Sections 2.1 and 2.3). Generally, the

corrections increase the compound-elastic cross sections, while reducing the cross

sections for the other channels. The corrections are most important in the vicinity

of thresholds and when few channels are open. Modern reaction codes account for

these correlations via a width fluctuation corrections factor Wcc′ (eq. (5)). In recent

years, there has been renewed focus on testing various approximate expressions for

Wcc′ against the GOE approach [51] and to develop improvements [56]. Some of the

assumptions underlying the KKM theory discussed here have also been tested against

GOE predictions [4, 3]. In addition, new procedures for gaining insights into the

correlations within the Random Matrix approach are currently considered [35].

Pre-equilibrium processes give important contributions to many measured reaction

cross sections. The underlying reaction mechanism involves a series of relatively weak

interactions leading to an extremely large number of final states, so that the usual direct-

reaction or coupled channel theory no longer applies. At the same time, a statistical

compound nucleus type of description cannot be used either, as equilibrium is not

reached. Various models of pre-equilibrium reactions have been developed. Modern

reaction codes typically implement one or more of these. In Section 3, we discussed

the most common approaches and outlined some of their short-comings. We concluded
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there that the existing preequilibrium models still fall far short of including the physics

necessary for a general description of these reactions.

Understanding the interplay of direct and compound reaction mechanisms becomes

very important for extracting cross sections indirectly from surrogate measurements,

as well as for interpreting experiments with rare isotopes. In the context of surrogate

reactions (see Section 4), what is typically thought of as a direct-reaction process is used

to initiate the formation of a compound nucleus. The outgoing direct-reaction particle

is detected in coincidence with reaction products that presumably result from the decay

of the compound nucleus and conclusions are drawn about the decay characteristics of

a related reaction. The accuracy of the extracted cross section depends on how well the

compound-nucleus formation process in the surrogate reaction is described. Similarly,

separating the compound and direct-reaction contributions in low-energy radioactive

beam experiments is crucial for obtaining reliable nuclear structure information.

6. Summary

Over the decades, there have been extensive theory developments aimed at properly

describing reactions involving compound nuclei. We have summarized here some

important approaches that focus on the reaction mechanisms (rather than on the

structure models that provide complementary input). Despite the wide use of the

Hauser-Feshbach formalism in modern reaction codes, some of the available theoretical

developments have not yet been implemented and some of the underlying assumptions

remain to be tested. Here we have revisited three areas of interest: the general theory

of compound-nuclear reactions, the role of pre-equilibrium reactions, and extensions

needed in order to get cross section information indirectly via hybrid reactions. We

find that various questions and challenges remain to be addressed in order to gain

a deeper understanding of the many-body processes involved and to obtain reliable,

comprehensive descriptions of this important class of nuclear reactions.
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sur des noyaux sphériques (Ph.D. Thesis), PhD thesis, Université de Bordeaux, 2006.

[32] M. Dupuis, T. Kawano, J. P. Delaroche, and E. Bauge, Physical Review C, 83 (2011).

[33] T. Ericson, Phys. Rev. Lett., 5 (1960), pp. 430–431.

[34] T. Ericson, Annals of Physics, 23 (1963), pp. 390 – 414.

[35] T. E. O. Ericson, Phys. Rev. E, 87 (2013), p. 022907.

[36] J. E. Escher, Towards an improved understanding of the formation and decay of compound nuclei.

Unpublished conference presentation, October 2013.

[37] J. E. Escher, J. T. Burke, F. S. Dietrich, N. D. Scielzo, I. J. Thompson, and W. Younes, Rev.

Mod. Phys., 84 (2012), pp. 353–397.

[38] J. E. Escher and F. S. Dietrich, Phys. Rev. C, 74 (2006), p. 054601.

[39] , Phys. Rev. C, 81 (2010), p. 024612.

[40] H. Feshbach, Annals of Physics, 5 (1958), pp. 357 – 390.



Theoretical descriptions of compound-nuclear reactions: open problems & challenges 25

[41] , Annals of Physics, 19 (1962), pp. 287 – 313.

[42] H. Feshbach, A. Kerman, and S. Koonin, Annals of Physics, 125 (1980), pp. 429 – 476.

[43] H. Feshbach, A. Kerman, and S. Koonin, Annals of Physics, 125 (1980), pp. 429–476.

[44] W. A. Friedman, M. S. Hussein, K. W. McVoy, and P. A. Mello, Physics Reports, 77 (1981),

pp. 47–119.

[45] E. Gadioli, E. G. Erba, and P. G. Sona, Nuclear Physics A, 217 (1973), pp. 589–610.

[46] S. Goriely, Astronomy and Astrophysics, 325 (1997), pp. 414–424.

[47] S. Goriely, Physics Letters B, 436 (1998), pp. 10 – 18.

[48] J. J. Griffin, Physical Review Letters, 17 (1966), pp. 478–481.

[49] , Physics Letters B, 24 (1967), pp. 5–7.

[50] W. Hauser and H. Feshbach, Phys. Rev., 87 (1952), pp. 366–373.

[51] S. Hilaire, C. Lagrange, and A. J. Koning, Annals of Physics, 306 (2003), pp. 209 – 231.

[52] P. E. Hodgeson, Nuclear Reactions and Nuclear Structure, Oxford University Press, 1971.

[53] C. H. Holbrow and H. H. Barschall, Nuclear Physics, 42 (1963), pp. 264–279.

[54] A. Iwamoto and K. Harada, Physical Review C, 26 (1982), pp. 1821–1834.

[55] M. Kawai, A. K. Kerman, and K. W. McVoy, Annals of Physics, 75 (1973), pp. 156 – 170.

[56] T. Kawano and P. Talou, Numerical simulation for low-energy nuclear reactions to validate

statistical models. Proceedings of the 2013 International Conference on Nuclear Data for Science

and Technology, to be published in Nuclear Data Sheets, 2014.

[57] A. Kerman and K. McVoy, Annals of Physics, 122 (1979), pp. 197 – 216.

[58] A. K. Kerman, L. S. Rodberg, and J. E. Young, Phys. Rev. Lett., 11 (1963), pp. 422–425.

[59] K. Kikuchi and M. Kawai, North-Holland, (1968).

[60] A. Koning and M. Chadwick, Physical Review C, 56 (1997), pp. 970–994.

[61] W. Kretschmer and M. Wangler, Phys. Rev. Lett., 41 (1978), pp. 1224–1226.

[62] A. M. Lane and R. G. Thomas, Rev. Mod. Phys., 30 (1958), pp. 257–353.

[63] K. McVoy and X. T. Tang, Physics Reports, 94 (1983), pp. 139–182.

[64] G. E. Mitchell, A. Richter, and H. A. Weidenmüller, Rev. Mod. Phys., 82 (2010), pp. 2845–2901.

[65] A. M. Mukhamedzhanov, C. A. Gagliardi, and R. E. Tribble, Phys. Rev. C, 63 (2001), p. 024612.

[66] H. Nishioka, J. J. M. Verbaarschot, H. A. Weidenmüller, and S. Yoshida, Annals of Physics, 172

(1986), pp. 67–99.

[67] H. Nishioka, H. A. Weidenmüller, and S. Yoshida, Annals of Physics, 183 (1988), pp. 166–187.
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